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ABSTRACT   

The main aim of load frequency control is 

to minimise the transient variations and 

also to make sure that steady state errors is 

zero. Many modern control techniques are 

used to implement a reliable controller. 

The objective of these control techniques 

is to produce and deliver power reliably by 

maintaining both voltage and frequency 

within permissible range. This thesis 

studies the reliability of various control 

techniques of load frequency control of the 

proposed system through simulation in the 

MATLAB-Simulink environment. 

1. INTRODUCTION  

 Good quality of electrical power system 

means both the voltage and frequency to 

be fixed at desired values irrespective of 

change in loads that occurs randomly. It is 

in fact impossible to maintain both active 

and reactive power without control which 

would result in variation of voltage and 

frequency levels. To cancel the effect of 

load variation and to keep frequency and 

voltage level constant a control system is 

required. Though the active and reactive 

powers have a combined effect on the 

frequency and voltage, the control problem 

of the frequency and voltage can be 

separated. Frequency is mostly dependent 

on the active power and voltage is mostly 

dependent on the reactive power. The most 

important task of LFC is to maintain the 

frequency constant against the varying 

active power loads, which is also referred 

as un- known external disturbance.  

2. LOAD FREQUENCY 

CONTROL:  

2.1 LOAD FREQUENCY PROBLEMS:  

If the system is connected to numerous 

loads in a power system, then the system 

frequency and speed change with the 

characteristics of the governor as the load 

changes. If it’s not required to maintain the 

frequency constant in a system then the 

operator is not required to change the 

setting of the generator. But if constant 

frequency is required the operator can 

adjust the velocity of the turbine by 

changing the characteristics of the 

governor when required. If a change in 

load is taken care by two generating 

stations running parallel then the complex 

nature of the system increases.   

2.2. SPEED GOVERNING SYSTEM:  

2.2.1 MATHEMATICAL 

MODELLING OF A GENERATOR:  

       With the use of swing equation of a 

synchronous machine to small 

perturbation, we have 
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       (2.1) 

 

Or in terms of small change in speed         

  (2.2) 

 Laplace Transformation gives,  

     (2.3)

 

Fig 2.1: Mathematical modelling block 

diagram for a generator   

2.2.2 MATHEMATICAL 

MODELLING OF LOAD:  

The load on a power system consists of 

variety of electrical drives. The load speed 

characteristic of the load is given by:   

     ΔPe = ΔPL + D Δω                        (2.4)  

Where ΔPL is the non-frequency sensitive 

change in load,  

DΔω is the load change that is frequency 

sensitive.  

D is expressed as % change in load divided by 

% change in frequency.  

 

 

Fig 2.2: Mathematical modelling Block 

Diagram of Load 

2.2.3 MATHEMATICAL 

MODELLING FOR PRIME MOVER:   

The source of power generation is the 

prime mover. It can be hydraulic turbines 

near waterfalls, steam turbine whose 

energy comes from burning of coal, gas 

and other fuels. The model of turbine 

relates the changes in mechanical power 

output ΔPm and the changes in the steam 

valve position ΔPV.  

  

where the turbine constant is in the range 

of 0.2 -2.0s.  

2.2.4 MATHEMATICAL 

MODELLING FOR GOVERNOR:   

When the electrical load is increased 

suddenly then the electrical power exceeds 

the input mechanical power. This 

deficiency of power in the load side is 

compensated from the kinetic energy of 

the turbine. Due to this reason the energy 

that is stored in the machine is decreased 

and the governor sends signal for 

supplying more volumes of water, steam 

or gas to increase the speed of the prime 

mover to compensate deficiency in speed.  
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In s domain 

 

The command ΔPg is transformed through 

amplifier to the steam valve position 

command ΔPV. We assume here a linear 

relationship and considering simple time 

constant we get this s-domain relation 

 

Combining all the above block diagrams 

,we get complete block diagram of single 

area system. 

The closed loop transfer function that 

relates the load change to the frequency 

deviation is 

 

2.3. AUTOMATIC GENERATION 

CONTROL:   

If the load on the system is suddenly 

increased, then the speed of the turbine 

drops before the governor could adjust the 

input of the steam to this new load. As the 

change in the value of speed decreases the 

error signal becomes lesser and the 

position of the governor and not of the fly 

balls gets nearer to the point required to 

keep the speed constant. One way to regain 

the speed or frequency to its actual value is 

to add an integrator on its way. The 

integrator will monitor the average error 

over a certain period of time and will 

overcome the offset. Thus as the load in 

the system changes continuously the 

generation is adjusted automatically to 

restore the frequency to its nominal value.  

2.3.1 AGC IN A SINGLE AREA:   

With the main LFC loop, change in the 

system load will result in a steady state 

frequency deviation, depending on the 

speed regulation of the governor. To 

reduce the frequency deviation to zero we 

need to provide a reset action by using an 

integral controller to act on the load 

reference setting to alter the speed set 

point. This integral controller would 

increase the system type by 1 which forces 

the final frequency deviation to zero. The 

integral controller gain needs to be 

adjusted for obtaining satisfactory transient 

response. The closed loop transfer function 

of the control system is given by 

 

2.4. METHODS OF FEEDBACK 

CONTROL IMPLEMENTATION:       

 2.4.1 POLE PLACEMENT 

TECHNIQUE:  

This is one of the design methods. Here we 

assume that all the state variables can be 

measured and are available for feedback. 

The poles of the closed ζ appropriate state 

feedback gain matrix if the system is 

completely state controllable. At first we 

need to determine the desired closed loop 

poles based on transient response, 

frequency response.  

Let the desired closed loop poles are to be 

at s=µ1,s=µ2,……..s=µn.   

In conventional approach to the design of a 

single input, single output control system, 

we design a compensator such that 

dominant poles have a desired damping 
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ratio ζ and a desired un damped natural 

frequency ωn. In this approach, effects on 

the responses of non-dominant closed loop 

are to be negligible. But this pole 

placement approach specifies all closed 

loop poles.  

Consider a control system:  

Ẋ=AX+BU                  (2.11)   

Y=CX+DU                  (2.12)                                                                                                     

X: state vector  

Y: output signal   

U: control signal   

A: n*n  

B: n*1  

C: 1*n  

D: constant (scalar)  

Let the control signal, U be  

  U=-KX                       (2.13)  

This means the control signal U is 

determined by an instantaneous state. Such 

a scheme is called state feedback. The K 

matrix is called State feedback gain 

matrix.  

Now, Ẋ= (A-BK) X        (2.14) 

The Eigen values of matrix A-BK are 

called regulatory poles. The problem of 

placing the regulatory poles at the desired 

location is called Pole placement problem.  

2.4.1.1 DETERMINATION OF K-

MATRIX USING 

TRANSFORMATION MATRIX T:  

Ẋ=AX+BU,     U=-KX  

STEP1: First check whether the system is 

completely state controllable.  

STEP2: From the characteristic 

polynomial for matrix A,  

             |SI-A|=sn+a1sn-1+………..+an.  

Determine the values of a1,a2,…..an.  

STEP3: Determine the transformation 

matrix T that transforms the system state 

equation into controllable canonical form.  

STEP4: Using the desired Eigen values 

write the desired characteristic polynomial  

 (s- µ1)(s- µ2)……..(s-µn) = sn + α1sn-1 + 

…….+αn  

 Determine the values of α1… αn.  

STEP5: The required state feedback gain 

matrix K can be determined, thus  

 K=[(αn- an)  (αn-1- an-1)……….( α1- 

a1)]T-1 (2.15)                                        

2.4.1.2 DETERMINATION OF K-

MATRIX USING DIRECT 

SUBSTITUTION METHOD:  

If the system is of low order (n<=3), direct 

substitution of matrix K into desired 

characteristic polynomial may be simpler.  

Let for n=3,  

K= [k1 K2 k3]  

Substitute this K matrix into desired 

characteristic polynomial |SI-A+BK| and 

equate it to         

(s- µ1)(s- µ2)(s- µ3) or  

|SI-A+BK|=(s- µ1)( s- µ2)( s- µ3)  

So, by equating the coefficients of like 

powers of s on both sides, it is possible to 

determine the values of k1, K2, k3.  
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2.4.1.3. ACKERMAN’S FORMULA:  

K= (0 0 ………1)[B  AB  A2B ………  

A(n-1)B](-1)[α1A(n-1) + α2A(n-2) 

+………+ α(n)]        (2.16)  

            

2.4.2. OPTIMAL CONTROL SYSTEM:  

This is a technique that is applied in the 

control system design which is 

implemented by minimizing the 

performance index of the system variables. 

Here we have discussed the design of the 

optimal controllers for the linear systems 

with quadratic performance index, which 

is also known as the linear quadratic 

regulator. The aim of the optimal regulator 

design is to obtain a control law u*(x, t) 

which can move the system from its initial 

state to the final state by minimizing the 

performance index. The performance 

index which is widely used is the quadratic 

performance index. Consider a plant:   

X (t) =Ax (t) + Bu (t)   

The aim is to find the vector K of the 

control law   

U (t) = -K (t)*x (t)   

Which minimises the value of the 

quadratic performance index J of the form:   

Where Q is a positive semi definite matrix 

and R is real symmetric matrix.   

To obtain the solution we make use of the 

method of  Langrange multipliers using an 

n vector of the unconstrained equation   

[x, λ, u, t]= [x’Qx + u’Ru] + λ’ [Ax + Bu – 

x’]       

The optimal values determined are found 

by equating the partial derivative to zero. 

We know the Riccati equation as:  

p(t)= -p(t)A - A’p(t) - Q+ p(t)BR-1B’p(t)                           

(2.19)  

We have assumed p(t) as a time varying 

positive matrix satisfying  

λ = 2p(t)x*                   (2.20)  

By solving the equation (2.19) the solution 

of the state equation in association with 

optimal control can be obtained.   

Compensators are mostly used to satisfy 

all desired specifications in a system. In 

most of the cases the system needs to fulfil 

some more specifications which is difficult 

to attain in case of a compensated system. 

As an alternative we use Optimal Control 

system. The trial and error system for the 

compensated design system makes it 

difficult for the designers to attain those 

specifications. This trial and error process 

works well for system with a single input 

and a single output. But for a multi-input-

multi-output system the trial and error 

method is replaced with Optimal Control 

design method where the trial and error 

uncertainties are excluded in parameter 

optimization method. It consists of a single 

performance index specially the integral 

square performance index 

3. PROBLEM STATEMENT:  
An isolated power station has the 

following parameters  

Turbine time constant = 0.5 s  

Governor time constant = 0.2 s  

Governor inertia constant = 5 s  

Governor speed regulation = R per unit  
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The load varies by 0.8 per cent for a 1 per 

cent change in frequency ( D=0.8)  

 

 

is 250 MW at nominal frequency 50 Hz. A 

sudden load change of 50 MW (𝝙pL= 0.2 

Per unit) occurs 

Find steady state Frequency deviation in 

Hz. Also obtain time domain performance 

specifications and the frequency deviation 

step response 

3.1. WITHOUT THE USE OF AGC:  
To obtain the time domain specifications 

and the step response following command 

is used:  

Pl= 0.2; num= [0.1 0.7 1];  

den= [1 7.08 10.56 20.8];  

t= 0:.02:10;  

c= -pl* step(num,den,t);  

plot(t, c), xlabel(‘t, sec’), ylabel(‘pu’)  

title(‘Frequency deviation step 

response’),grid  

timespec(num, den) 

Fig 3.1.Frequency deviation step response 

without using AGC 

The time domain specifications are:  

Peak time= 1.223 Percentage overshoot= 

54.80  

Rise time= 0.418  

Settling time= 6.8  

The Simulink model for the above system 

is: 

 

 

Fig 3.2.Simulation Block Diagram of the 

system without using AGC 

 

3.2. USING AGC FOR AN ISOLATED 

POWER SYSTEM:  
Substituting the system parameters we get 

the closed loop transfer function as:  

T(s)= (0.1s3+ 0.7s2+ s)/ (s4+ 7.08s3+ 

10.56s2+ 20.8s+ 7)  

To find the step response following 

command is used:  

pl= 0.2;  

ki= 7;  

num= [0.1 0.7 1 0];  

den= [1 7.08 10.56 20.8 7];  

t= 0:.02:12;  

c= -pl* step(num, den, t);  

plot(t, c),grid  

xlabel(‘t, sec’), ylabel(‘pu’)  

title(‘Frequency deviation step response’) 

 

Fig 3.3 Frequency deviation step using 

AGC for an isolated system 
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From the step response we have seen that 

the steady state frequency deviation is 

zero, and the frequency returns to its actual 

value in approximately 10seconds.  

The Simulink model for the above system 

is: 

 

Fig 3.4.Simulation block diagram for the 

given system using AGC for an isolated 

system 

3.3. LOAD FREQUENY CONTROL 

USING POLE-PLACEMENT DESIGN:  
PL = 0.2;  

A = [-5 0 -100; 2 -2 0; 0 0.1 -0.08];  

B = [0; 0; -0.1]; BPL = B*PL;  

C = [0 0 1]; D = 0;  

t=0:0.02:10;  

[y, x] = step(A, BPL, C, D, 1, t);  

figure(1), plot(t, y), grid  

xlabel('t, sec'), ylabel('pu')  

r =eig(A) 

 

Fig 3.5: Uncompensated frequency 

deviation step response  

Settling time of the uncompensated system 

is 4seconds. 

Now we are interested to find k such that 

the roots of the characteristic equation is at 

-2+j6,-2-j6 and -3.  

Following commands is required to find 

the desired output:  

P=[-2.0+j*6 -2.0-j*6 -3];  

[K, Af] = placepol(A, B, C, P);  

t=0:0.02:4;  

[y, x] = step(Af, BPL, C, D, 1, t);  

figure(2), plot(t, y), grid  

xlabel('t, sec'), ylabel('pu') 

 

Fig 3.6 Compensated Frequency deviation 

step response 

 

The result of the above mentioned 

MATLAB code is: 
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Fig 3.7: Output of the pole placement 

technique 

Thus, the state feedback constants k1= 4.2, 

K2= 0.8 and k3= 0.8 results in the desired 

characteristic equation roots. We have seen 

transient response has improved and the 

response settles to a steady state value of -

.0017 p.u.in 2.5 seconds. 

3.4. LOAD REQUENCY CONTROL 

USING OPTIMAL CONTROL 

DESIGN:  
Performance index is given as:  

 
MATLAB CODE:  

PL=0.2;  

A = [-5 0 -100; 2 -2 0; 0 0.1 -0.08];  

B = [0; 0; -0.1]; BPL=PL*B;  

C = [0 0 1];  

D = 0;  

Q = [20 0 0; 0 10 0; 0 0 5];  

R = .15;  

[K, P] = lqr2(A, B, Q, R)  

Af = A - B*K  

t=0:0.02:1;  

[y, x] = step(Af, BPL, C, D, 1, t);  

plot(t, y), grid  

xlabel('t, sec'), ylabel('pu') 

The output is: 

Fig 3.8: Output of the LFC using optimal 

control design 

 

Fig 3.9 Frequency deviation step response of 

LFC using optimal control design  

We see that the transient response settles to a 

steady state of -0.0007 pu in about 

0.6seconds. 

 

3.5 DISCUSSION:  
From the above simulations it is clear that 

the Figure 3.6 which depicts the deviation 

in frequency of the isolated system has 

more ripples and its counterpart in Figure 

3.9  

And has fewer ripples. It is clear from the 

graphical representation of the step 
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response that the settling time is more in 

an uncompensated system than that for a 

compensated system while using pole 

placement technique. When we have a 

look into the step response in the Optimal 

Controller design then it is observed that 

the settling time is comparatively less. The 

system reaches equilibrium faster than that 

for the controllers using pole placement 

design. In general there are two situations 

where the compensation is required. The 

first case is when the system is unstable. 

The second case is when the system is 

stable but the settling time is more. Hence 

using pole placement technique is nothing 

but using the compensation scheme to 

reduce the settling time of the system. It is 

clearly shown that the system reached 

faster to a steady state in compensated 

system than for an uncompensated system 
 

 

 Steady 

State 

Frequency 

Deviation 

Settling 

Time 

Uncompensated 

System 

-0.0096 pu    6.8s 

Automatic 

Generation 

Control 

    0 pu    10s 

Pole Placement 

Design 

-0.0017 pu     2.5s 

Optimal 

Control Design 

-0.0007     0.6s 

 

 

 

 
4. CONCLUSION:  
 

This project shows a case study of 

designing a controller that can withstand 

optimal results in a single area power 

system when the input parameters of the 

system are changed. Four methods of Load 

Frequency Control were studied taking an 

isolated power system into account. It was 

seen that the Automatic Generation 

Control was better than the conventional 

uncompensated system in terms of steady 

state frequency deviation. Then the Pole 

Placement Control was seen to have better 

results than the AGC in terms of settling 

time. Finally the Optimal controller design 

provided the best results in terms of both 

frequency deviation and settling time and 

achieved required reliability when the 

input parameters were changed. 
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